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Abstract. A definition of the self-fractional Hankel functions and a formula for generating
them are presented. Some properties of these functions are investigated. It is shown that a self-
fractional Hankel function for an angleα = πN/M, whereN andM are indivisible integers
(N < M), is also a self-fractional Hankel function for anglesπj/M (j = 1, 2, 3 . . .).

1. Introduction

The Hankel transform (HT), like the Fourier transform (FT) and the Laplace transform, is
a widely applicable mathematical tool in physics and other fields [1]. For example, the
zero-order HT describes the diffraction effect of an axially symmetric light beam in free
space and the high-order HTs are usually used in the analysis of a laser cavity with circular
mirrors. Although the fractional Fourier transform (FRFT) was proposed earlier in [2–4],
the fractional Hankel transform (FRHT) was only introduced recently [5, 6]. The FRHT is
effectively used in the design of lenses, the analysis of a laser cavity, the study of wave
propagation in a quadratic refractive index (GRIN) medium when the system is axially
symmetric.

In this paper, we define the self-fractional Hankel functions (SFHFs) as eigenfunctions
of the FRHT for some angles, and propose a formula for constructing the SFHF. We also
investigate some properties of SFHFs and indicate that a SFHF with any given angleα is
also a SFHF for anglesjβ, whereβ is a certain angle depending onα andj = 1, 2, 3 . . . .

The FRHT of a functionf (r) for an angleα is defined as follows [5, 6]:

Hα
v {f (r)} =

∫ ∞
0
f (r)Kα

v (r, ρ)r dr (1)

where the kernel

Kα
v (r, ρ) =

exp[i(1+ v)((π/2)− α)]
sinα

exp

[
−i

1

2
(r2+ ρ2) cotα

]
Jv

(
rρ

sinα

)
(2)

whereJv is thevth-order Bessel function andv is an integer. This transform describes the
behaviour of wave propagation through an axially symmetric GRIN medium in the paraxial
approximation. α changes from 0 toπ for α < 0 and forα > π , and the periodicity
property

Hα+π
v {f (r)} = Hα

v {f (r)} (3)

can be used to express the FRHT in the region of 0< α < π . If α is a multiple ofπ , the
kernelKα

v (r, ρ) corresponds toδ(r − ρ), and the FRHT reduces to the identity operator.
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For α = π/2, the FRHT becomes the conventional HT. The FRHT possesses commutative
additivity and linearity properties as follows [6]:

Hα
v {Hβ

v {f (r)}} = Hβ
v {Hα

v {f (r)}} = Hα+β
v {f (r)}. (4)

Hα
v {c1f (r)+ c2g(r)} = c1H

α
v {f (r)} + c2H

α
v {g(r)} (5)

wherec1 andc2 are complex constants.
Similarly to the definition of the self-fractional Fourier function [7, 8], we define such

a function as a SFHF for angleα if it satisfies the following equation:

Hα
v {f αv (r)}(ρ) = Af αv (ρ) (6)

whereA is a complex constant factor. Equation (6) means thatf αv (r) is an eigenfunction
of the corresponding FRHT operatorHα

v with an eigenvalueA. From equations (1), (2)
and (4), it is evident that any function is certainly a SFHF forα = nπ ; however, a SFHF
should be a self-Hankel function (SHF) whenα = nπ/2, wheren is an integer. Using the
Parserval relation of the FRHT [6]∫ ∞

0
|f αv (r)|2r dr =

∫ ∞
0
|Hα

v {f αv (r)}(ρ)|2ρ dρ = |A|2
∫ ∞

0
|f αv (ρ)|2ρ dρ (7)

it follows that |A| = 1, i.e.A should have the formA = exp(±i2πφ), whereφ is a real
constant. This means that all SFHFs can image themselves after performing the FRHT with
the corresponding angleα. WhenA = 1, it is the case of exact self-reproduction.

Equation (3) shows that the FRHT possesses periodicity with a period ofπ ; therefore,
for angleα 6= nπ , it can be expressed in the formα = πN/M, whereN andM are
irreducible integers andN < M. Taking into account the periodicity property (3), any
function retrieves itself after applying a cascade ofK times a FRHT for angleα,

HKα
v {f (r)} = f (r) (8)

whereK andL are the smallest integers satisfying the following condition:

KN/M = L. (9)

As N and M are irreducible andN < M, therefore the smallest integerK satisfying
equation (8) should beM. Combining equations (4), (6) and (8), it follows that
AM = exp(i2πφM) = 1, consequentlyφ takes a series of valuesj/M (j = 1, 2, 3, . . .).

The above analysis indicates a way for generating a SFHF with angleα = πN/M. For
instance, for any transformable functiong(r), one can use its FRHT spectra with a sequence
of angles and construct a linear superposition of them with appropriate coefficients,

f αv (r) =
K∑
k=1

exp(∓i2πkφ)H(k−1)α
v {g(ρ)}. (10)

Using equations (3) and (4), andKα = KπN/M = Lπ , once can easily prove that

Hα
v {f αv (r)}(ρ) =

K∑
k=1

exp(∓i2πkφ)Hα
v {H(k−1)α

v {g(ρ)}}(ρ)

=
K∑
k=1

exp[∓i2π(k − 1)φ]H(k−1)α
v {g(r)}

= exp(±i2πφ)f αv (ρ). (11)

Thus, the corresponding eigenvalue for this special constructing SFHF is exp(±i2πφ) under
the FRHT operator with angleα = πN/M. Whenφ is an integer and the eigenvalueA = 1,
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the SFHF becomes the exact self-reproduction after performing the FRHT withα = πN/M.
Whenα = π/2, the FRHT reduces to the classical HT and the corresponding SHF can be
expressed in the form

f π/2v (r) = g(r)+Hπ/2
v {g(r)}.

If the functiong(r) is selected asg(r) = e−r , for v = 0, the SHFf π/20 (r) has the form

f
π/2
0 (r) = e−r + 1√

(r2+ 1)3

and forv = 1, the SHFf π/21 (r) takes the form

f
π/2
1 (r) = e−r + r√

(r2+ 1)3
.

The SFHFs have some specific features, which may be useful for the analysis of self-
imaging in the FRHT optical system. We now investigate some of their fundamental
properties.

The linear superposition of SFHFs for the same angle with equal eigenvalueA is also a
SFHF for this angle with eigenvalues A. Suppose that bothf αv (r) andhαv (r) are SFHFs for
angleα with eigenvalueA; by using the linearity of FRHT (5) and definition (6), we have

Hα
v {c1f

α
v (r)+ c2h

α
v (r)} = A[c1f

α
v (r)+ c2h

α
v (r)]. (12)

The FRHT of a SFHF for angleα with eigenvalueA is also a SFHF for angleα with
the same eigenvalue. From equation (4) and definition (6)

Hα
v {Hβ

v {f αv (r)}} = Hβ
v {Hα

v {f αv (r)}} = AHβ
v {f αv (r)}. (13)

It is found that a SFHF for any angleα = πN/M is also a SFHF for the angleβ = π/M
andvice versa. From equation (4), it is seen that if a function is a SFHF forα = πN/M,
then it is also a FRHT forjα = πjN/M (j = 1, 2, 3 . . .):

Hjα
v {f αv (r)} = H(j−1)α

v {Hα
v {f αv (ρ)}}

= AH(j−1)α
v {f αv (r)} = · · · = Ajf αv (ρ). (14)

From equation (14), it is evident thatf αv (r) is also an eigenfunction of the FRHT for angle
jα, and the corresponding eigenvalue isAj . Because the FRHT is a periodic operator, for
somej , one hasjα = πjN/M = nπ +π/M; thus the corresponding FRHT reduces to the
FRHT with angleβ = π/M. Consequently, a SFHF with angleα = πN/M also is certainly
a SFHF with angleβ = π/M. If N = 1 is selected in equation (14), it is easy to find that if
a function is a SFHF withβ = π/M, this function is also a FRHT with angleα = πN/M.
Furthermore, this function is also a SFHF for anglesπj/M (j = 1, 2, 3, . . .). We have
indicated some fundamental properties of SFHFs, further research should be stimulated by
applications of the FRHT system.

In general, for any linear integral transformR with periodicity T and additivity
properties, as soon as it satisfies the Parseval relation (7), there exists a general method
for generating the eigenfunctions of this transform from any transformable functiong(x).
The eigenfunctions are defined by an equation similar to equation (6). For any orderα 6= nT ,
it can always be expressed in the formα = NT/M, whereN andM are irreducible and
N < M. Using the Parserval relation, the eigenvalueA takes|A| = 1. Combining the
periodicity and additivity properties, one can deriveAM = exp(i2πφM) = 1 and thus the
eigenfunctions of this transform with orderα are

Fα(x) =
K∑
k=1

exp(∓i2πφ)R(k−1)α{g(x)} (15)



9772 Yan Zhang et al

whereK andL are the smallest integers satisfying equation (9).φ can take a series of
values,j/M (j = 1, 2, 3, . . .). The self-fractional Fourier functions and SFHFs can be
considered as particular cases.

In conclusion, we have proposed a definition of the SFHFs and a procedure to generate
such SFHFs for any angleα with eigenvalueA = exp(±i2πj/M). Some properties of these
functions have been investigated. It has been proven that a SFHF for angleα = πN/M is
also a SFHF for anglesβ = πj/M (j = 1, 2, 3, . . .). We have also generalized our results
to the case of eigenfunctions of any linear integral transform in which the periodicity and
additivity properties, as well as the Parseval relation, hold.
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